11th World Congress on Genetics Applied to Livestock Production Auckland, New-Zealand

Improving dairy ewes resistance to gastro-intestinal parasite infections in natural conditions by selecting rams in artificial infections

Sophie Aguerre, P. Jacquiet, H. Brodier, J.P. Bournazel, C. Grisez, F. Prévot, L. Michot, F. Fidelle, J.M. Astruc & C.R. Moreno

GenPhySE – INRA Toulouse

Session Biology - Disease Resistance

February 13, 2018

Breeding strategies to select for parasite resistance

- Resistance measure = Fecal Egg Count (FEC)
- Selection of the rams based on the phenotypes of their offspring in natural infections
 - \checkmark only one intervention on the animals
 - × around 30 animals by sire \rightarrow good accuracy of the index
 - × no control of the number of larvae ingested by the animals

• Selection of the rams based on their own phenotypes in experimental infections

- ✓ pyramidal organization of the population
- \checkmark fewer animals are phenotyped
- × at least 3 interventions per animal
- × time consuming

Sheep breeding and parasitism in South-West of France

• 2nd area for dairy sheep production in France

a total population of 280,000 Blond-faced Manech ewes in 2015 28% ewes in selection program 150 AI progeny tested rams / year Nucleus flocks

•Favorable conditions to parasites in this area:

flocks mainly raised outside mild temperatures (5°C-25°C) rainy area (1000-1600mm of annual rainfall)

Anthelmintic resistance in parasite populations: only one efficient molecule without any withdrawal time for milk

Benzimidazole Levamisole Ivermectin, moxidectin, eprinomectin

Anthelmintic resistance in France

Two populations to study genetic resistance to parasites

Phenotypes in experimental and in natural infections

Estimation of heritabilities and genetic correlations

FEC are heritable both in experimental and natural conditions

High genetic correlations between nucleus rams FEC and

their offspring FEC

High genetic correlations between nucleus rams FEC and

their offspring FEC

Routine evaluation based on fecal egg count after the second

infection

10

FEC : Fecal Egg Count

Practical demonstration of the efficiency of the selection

Practical demonstration of the efficiency of the selection

Practical demonstration of the efficiency of the selection

Take home message

Selecting rams for resistance in experimental infections is an efficient way to increase resistance to GIN in naturally infected ewes in pastures

- ✓ Fecal egg counts are heritable
- ✓ High genetic correlations between fecal egg count of nucleus rams and fecal egg count of their offspring
- ✓ Practical demonstration of the efficiency of the selection

Thank you for you attention !

Article under review: S.Aguerre et al., 2018 Veterinary Parasitology

Acknowledgements

Thanks to the farmers who took part in the study Thanks to CDEO (breeding organization of Manech Blond-Faced), the French Livestock Institute and ENVT (Veterinary School of Toulouse) teams who performed the phenotyping

OULOUS